Tackling subway delays: MTA and Google’s collaborative effort

https://nypost.com/wp-content/uploads/sites/2/2025/03/2025-person-stabbed-back-96084267.jpg?quality=75&strip=all&w=1024

The New York City Metropolitan Transportation Authority (MTA) has partnered with Google for a groundbreaking pilot project designed to enhance the dependability of its outdated subway network. Utilizing Google’s smartphone technology, this initiative aims to detect and resolve track problems proactively to prevent service interruptions. Called “TrackInspect,” the program marks a major advancement in incorporating artificial intelligence and contemporary technology into public transportation.

The Metropolitan Transportation Authority (MTA) in New York City has teamed up with Google in an innovative pilot project aimed at improving the reliability of its aging subway system. By leveraging Google’s smartphone technology, the initiative seeks to identify and address track issues before they lead to service disruptions. Known as “TrackInspect,” the program represents a significant step forward in integrating artificial intelligence and modern technology into public transit.

“In recognizing the initial indicators of track deterioration, we not only decrease maintenance expenses but also lessen disruptions experienced by passengers,” stated Demetrius Crichlow, the president of New York City Transit, in a statement issued in late February.

The collaboration between the MTA and Google forms a component of a larger initiative to update New York City’s 120-year-old subway system, which still confronts issues due to its outdated infrastructure and regular delays. Although the pilot program yielded encouraging outcomes, doubts persist about the potential expansion of TrackInspect, considering the financial limitations the MTA is experiencing.

The MTA’s partnership with Google is part of a broader effort to modernize New York’s 120-year-old subway system, which continues to face challenges related to aging infrastructure and frequent delays. While the pilot program demonstrated promising results, questions remain about whether TrackInspect will be expanded given the financial constraints facing the MTA.

Tackling delays with AI and smartphones

The TrackInspect initiative focuses on tackling a crucial element of the problem: pinpointing and correcting mechanical issues before they worsen. Throughout the pilot phase, six Google Pixel smartphones were placed in four R46 subway cars, recognizable by their unique orange and yellow seats. These devices captured 335 million sensor readings, more than one million GPS points, and 1,200 hours of audio data.

The smartphones were strategically located both inside and beneath the subway cars. The external devices were fitted with microphones to record both sound and vibrations, whereas the internal phones had their microphones deactivated to ensure passenger conversations weren’t recorded. These internal devices focused exclusively on capturing vibrations to identify any irregularities in the tracks.

Rob Sarno, un asistente del jefe de vías de la MTA, desempeñó un papel crucial en el proyecto. Sus tareas incluían examinar los fragmentos de audio señalados por el sistema de inteligencia artificial para detectar posibles problemas en las vías. “El sistema destacó áreas con niveles de decibelios anormales, lo que podría sugerir uniones sueltas, rieles dañados, u otros defectos,” explicó Sarno.

The A train line was selected for the pilot, providing a varied testing environment with both subterranean and elevated tracks. It also featured segments of newly built infrastructure, which served as a benchmark for analysis. Although not every delay on the A line is due to mechanical issues, the data gathered during the pilot could assist in resolving persistent problems and enhancing overall service.

The A train line, chosen for the pilot, offered a diverse testing environment with both underground and above-ground tracks. It also included sections of recently constructed infrastructure, providing a baseline for comparison. While not all delays on the A line are caused by mechanical issues, the data captured during the pilot could help address recurring problems and improve overall service.

The TrackInspect initiative produced promising results, as the AI system accurately identified 92% of defect locations that were confirmed by MTA inspectors. Sarno estimated his own accuracy rate in anticipating track defects from audio data to be approximately 80%.

The TrackInspect program yielded encouraging results, with the AI system successfully identifying 92% of defect locations verified by MTA inspectors. Sarno estimated his personal success rate in predicting track defects based on audio data at around 80%.

A pesar de su éxito, el programa piloto plantea dudas sobre su escalabilidad y coste. La MTA no ha revelado cuánto costaría implementar TrackInspect en todo su sistema de metro, que abarca 472 estaciones y atiende a más de mil millones de pasajeros cada año. La agencia ya se enfrenta a desafíos financieros, necesitando miles de millones de dólares para completar proyectos de infraestructura en curso.

La participación de Google en el piloto formó parte de una iniciativa de prueba de concepto desarrollada sin costo para la MTA. Sin embargo, ampliar el programa probablemente requeriría una inversión considerable, convirtiendo el financiamiento en un factor clave para los responsables de la toma de decisiones.

An increasing movement in transit advancements

A growing trend in transit innovation

Google has previously worked with other transportation agencies. The tech company has created tools to optimize Amtrak’s scheduling and has teamed up with parking technology providers to incorporate street parking information into Google Maps. Nonetheless, the size and intricacy of New York’s subway system make this project especially ambitious.

Google itself has collaborated with other transportation agencies in the past. The tech giant has developed tools to enhance Amtrak’s scheduling and partnered with parking technology providers to integrate street parking data into Google Maps. However, the scale and complexity of New York’s subway system make this project particularly ambitious.

Looking forward

Although the TrackInspect pilot has concluded, the MTA is investigating collaborations with additional technology providers to further improve its maintenance procedures. The agency is also evaluating data from the pilot to assess its effects on minimizing delays and enhancing service. Initial signs indicate that specific types of delays, including those from braking problems and track defects, declined on the A line during the pilot. However, the MTA warns that more analysis is required to verify a direct connection to the program.

Por el momento, el piloto simboliza un paso esperanzador hacia la modernización de las operaciones de la MTA y la resolución de los desafíos de un sistema de tránsito envejecido. Al combinar el conocimiento de empresas tecnológicas como Google con la experiencia de los profesionales del transporte, la ciudad de Nueva York podría ofrecer una experiencia de metro más confiable para sus millones de pasajeros diarios.

Reflecting on the project, Sarno highlights the promise of AI-driven solutions to revolutionize public transit. “This technology enables us to identify issues sooner, act more swiftly, and ultimately offer improved service to our passengers,” he stated.

As Sarno reflects on the project, he emphasizes the potential of AI-driven solutions to transform public transportation. “This technology allows us to detect problems earlier, respond faster, and ultimately provide better service to our customers,” he said.

The MTA’s collaboration with Google underscores the potential of public-private partnerships to drive innovation in critical infrastructure. Whether TrackInspect becomes a permanent fixture in New York’s subway system remains to be seen, but its success highlights the possibilities of integrating cutting-edge technology into the daily lives of commuters.

By George M. Miller

You May Also Like